李先生:13691912091 QQ:1648252878
黃小姐:15012797976 QQ:1311044072
MSN:ltz52099@hotmail.com
采用圖1a所示的拓撲結構,系統需大容量不可調直流電源,MBR1545CT一般可采用整流變壓器降壓,二極管整流并經電容濾波得到。這種結構雖可保證并聯的每條支路有共同的直流電壓輸入,避免并聯支路因直流側輸入電壓不同而帶來的不均衡,但該直流電源的容量大,電流達20KA,直流母線承受的負荷過重,前級AC-DC設備要求較高,不易實現。另外,輸入端共用母線不利于實現完全意義上的獨立電源模塊的并聯。因此,采用如圖1b所示的AC-DC/DC直流電源并聯的拓撲結構。
圖1b所示的拓撲結構可保證每個AC-DC/DC電源模塊的獨立性,即可實現直流電源裝置的并聯,能夠根據實際的電壓,電流及功率的要求自由地增減模塊的個數!在實際應用中有很大的空間,有一定的研究價值。但這種拓撲結構也有它不利的一面!即若變壓器輸出電壓略有差別,則每個整流模塊的輸出電壓將不同,從而造成各整流模塊輸出電流嚴重不平衡。
不過,這種不平衡可采取如下相應措施進行抑制:首先,在采MBR1545CT用獨立的AC-DC/DC電源并聯時,應盡量做到每個模塊的AC-DC/DC輸出直流電壓接近相等;其次,針對由于變壓器輸出電壓不同造成的各整流模塊輸出電流的不平衡,可在DC/DC環節設置均流措施。DC/DC模塊采用的是受限單極型脈寬調制方式(PDW),通過調節各DC/DC模塊的占空比使各回路的負載趨于平衡。當電源模塊給定電流正負切換時,可實現不同象限的運行,滿足系統4象限運行的要求。
2 大功率直流電源的控制方案
在托卡馬克快控電源的應用中,要求電源輸出電流實時跟蹤給定MBR1545CT電流曲線。因此,該電源系統是電流隨動系統,系統的快速性將是一較重要的性能指標。而控制方式的選擇將影響整個系統的靜態與動態性能指標。
為更好提高系統穩態和動態性能指標的精度,實現電流跟隨性,采用兩級電流控制(圖2),即總電流環和模塊電流環相互配合,不僅可提高性能指標,且可實現各模塊電流的均衡。