卡爾曼濾波器 – Kalman Filter
發布時間:2008/8/23 0:00:00 訪問次數:767
1.什么是卡爾曼濾波器
(what is the kalman filter?)
在學習卡爾曼濾波器之前,首先看看為什么叫“卡爾曼”。跟其他著名的理論(例如傅立葉變換,泰勒級數等等)一樣,卡爾曼也是一個人的名字,而跟他們不同的是,他是個現代人!
卡爾曼全名rudolf emil kalman,匈牙利數學家,1930年出生于匈牙利首都布達佩斯。1953,1954年于麻省理工學院分別獲得電機工程學士及碩士學位。1957年于哥倫比亞大學獲得博士學位。我們現在要學習的卡爾曼濾波器,正是源于他的博士論文和1960年發表的論文《a new approach to linear filtering and prediction problems》(線性濾波與預測問題的新方法)。如果對這編論文有興趣,可以到這里的地址下載: http://www.cs.unc.edu/~welch/media/pdf/kalman1960.pdf。
簡單來說,卡爾曼濾波器是一個“optimal recursive data processing algorithm(最優化自回歸數據處理算法)”。對于解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機器人導航,控制,傳感器數據融合甚至在軍事方面的雷達系統以及導彈追蹤等等。近年來更被應用于計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。
2.卡爾曼濾波器的介紹
(introduction to the kalman filter)
為了可以更加容易的理解卡爾曼濾波器,這里會應用形象的描述方法來講解,而不是像大多數參考書那樣羅列一大堆的數學公式和數學符號。但是,他的5條公式是其核心內容。結合現代的計算機,其實卡爾曼的程序相當的簡單,只要你理解了他的那5條公式。
在介紹他的5條公式之前,先讓我們來根據下面的例子一步一步的探索。
假設我們要研究的對象是一個房間的溫度。根據你的經驗判斷,這個房間的溫度是恒定的,也就是下一分鐘的溫度等于現在這一分鐘的溫度(假設我們用一分鐘來做時間單位)。假設你對你的經驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(white gaussian noise),也就是這些偏差跟前后時間是沒有關系的而且符合高斯分配(gaussian distribution)。另外,我們在房間里放一個溫度計,但是這個溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白噪聲。
好了,現在對于某一分鐘我們有兩個有關于該房間的溫度值:你根據經驗的預測值(系統的預測值)和溫度計的值(測量值)。下面我們要用這兩個值結合他們各自的噪聲來估算出房間的實際溫度值。
假如我們要估算k時刻的是實際溫度值。首先你要根據k-1時刻的溫度值,來預測k時刻的溫度。因為你相信溫度是恒定的,所以你會得到k時刻的溫度預測值是跟k-1時刻一樣的,假設是23度,同時該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優溫度值的偏差是3,你對自己預測的不確定度是4度,他們平方相加再開方,就是5)。然后,你從溫度計那里得到了k時刻的溫度值,假設是25度,同時該值的偏差是4度。
由于我們用于估算k時刻的實際溫度有兩個溫度值,分別是23度和25度。究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的covariance來判斷。因為kg^2=5^2/(5^2+4^2),所以kg=0.78,我們可以估算出k時刻的實際溫度值是:23+0.78*(25-23)=24.56度。可以看出,因為溫度計的covariance比較小(比較相信溫度計),所以估算出的最優溫度值偏向溫度計的值。
現在我們已經得到k時刻的最優溫度值了,下一步就是要進入k+1時刻,進行新的最優估算。到現在為止,好像還沒看到什么自回歸的東西出現。對了,在進入k+1時刻之前,我們還要算出k時刻那個最優值(24.56度)的偏差。算法如下:((1-kg)*5^2)^0.5=2.35。這里的5就是上面的k時刻你預測的那個23度溫度值的偏差,得出的2.35就是進入k+1時刻以后k時刻估算出的最優溫度值的偏差(對應于上面的3)。
就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優的溫度值。他運行的很快,而且它只保留了上一時刻的covariance。上面的kg,就是卡爾曼增益(kalman gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!
下面就要言歸正傳,討論真正工程系統上的卡爾曼。
3.卡爾曼濾波器算法
(the kalman filter algorithm)
在這一部分,我們就來描述源于dr kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(probability),隨即變量(random variable),高斯或正態分配(gaussian distribution)還有state-space model等等。但對于卡爾曼濾波器的詳細證明,這里不能一一描述。
首先,我們先要引入一個離散控制過程的系統。該系統可用一個線性隨機微分方程(linear stochastic difference e
(what is the kalman filter?)
在學習卡爾曼濾波器之前,首先看看為什么叫“卡爾曼”。跟其他著名的理論(例如傅立葉變換,泰勒級數等等)一樣,卡爾曼也是一個人的名字,而跟他們不同的是,他是個現代人!
卡爾曼全名rudolf emil kalman,匈牙利數學家,1930年出生于匈牙利首都布達佩斯。1953,1954年于麻省理工學院分別獲得電機工程學士及碩士學位。1957年于哥倫比亞大學獲得博士學位。我們現在要學習的卡爾曼濾波器,正是源于他的博士論文和1960年發表的論文《a new approach to linear filtering and prediction problems》(線性濾波與預測問題的新方法)。如果對這編論文有興趣,可以到這里的地址下載: http://www.cs.unc.edu/~welch/media/pdf/kalman1960.pdf。
簡單來說,卡爾曼濾波器是一個“optimal recursive data processing algorithm(最優化自回歸數據處理算法)”。對于解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機器人導航,控制,傳感器數據融合甚至在軍事方面的雷達系統以及導彈追蹤等等。近年來更被應用于計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。
2.卡爾曼濾波器的介紹
(introduction to the kalman filter)
為了可以更加容易的理解卡爾曼濾波器,這里會應用形象的描述方法來講解,而不是像大多數參考書那樣羅列一大堆的數學公式和數學符號。但是,他的5條公式是其核心內容。結合現代的計算機,其實卡爾曼的程序相當的簡單,只要你理解了他的那5條公式。
在介紹他的5條公式之前,先讓我們來根據下面的例子一步一步的探索。
假設我們要研究的對象是一個房間的溫度。根據你的經驗判斷,這個房間的溫度是恒定的,也就是下一分鐘的溫度等于現在這一分鐘的溫度(假設我們用一分鐘來做時間單位)。假設你對你的經驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(white gaussian noise),也就是這些偏差跟前后時間是沒有關系的而且符合高斯分配(gaussian distribution)。另外,我們在房間里放一個溫度計,但是這個溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白噪聲。
好了,現在對于某一分鐘我們有兩個有關于該房間的溫度值:你根據經驗的預測值(系統的預測值)和溫度計的值(測量值)。下面我們要用這兩個值結合他們各自的噪聲來估算出房間的實際溫度值。
假如我們要估算k時刻的是實際溫度值。首先你要根據k-1時刻的溫度值,來預測k時刻的溫度。因為你相信溫度是恒定的,所以你會得到k時刻的溫度預測值是跟k-1時刻一樣的,假設是23度,同時該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優溫度值的偏差是3,你對自己預測的不確定度是4度,他們平方相加再開方,就是5)。然后,你從溫度計那里得到了k時刻的溫度值,假設是25度,同時該值的偏差是4度。
由于我們用于估算k時刻的實際溫度有兩個溫度值,分別是23度和25度。究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的covariance來判斷。因為kg^2=5^2/(5^2+4^2),所以kg=0.78,我們可以估算出k時刻的實際溫度值是:23+0.78*(25-23)=24.56度。可以看出,因為溫度計的covariance比較小(比較相信溫度計),所以估算出的最優溫度值偏向溫度計的值。
現在我們已經得到k時刻的最優溫度值了,下一步就是要進入k+1時刻,進行新的最優估算。到現在為止,好像還沒看到什么自回歸的東西出現。對了,在進入k+1時刻之前,我們還要算出k時刻那個最優值(24.56度)的偏差。算法如下:((1-kg)*5^2)^0.5=2.35。這里的5就是上面的k時刻你預測的那個23度溫度值的偏差,得出的2.35就是進入k+1時刻以后k時刻估算出的最優溫度值的偏差(對應于上面的3)。
就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優的溫度值。他運行的很快,而且它只保留了上一時刻的covariance。上面的kg,就是卡爾曼增益(kalman gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!
下面就要言歸正傳,討論真正工程系統上的卡爾曼。
3.卡爾曼濾波器算法
(the kalman filter algorithm)
在這一部分,我們就來描述源于dr kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(probability),隨即變量(random variable),高斯或正態分配(gaussian distribution)還有state-space model等等。但對于卡爾曼濾波器的詳細證明,這里不能一一描述。
首先,我們先要引入一個離散控制過程的系統。該系統可用一個線性隨機微分方程(linear stochastic difference e
1.什么是卡爾曼濾波器
(what is the kalman filter?)
在學習卡爾曼濾波器之前,首先看看為什么叫“卡爾曼”。跟其他著名的理論(例如傅立葉變換,泰勒級數等等)一樣,卡爾曼也是一個人的名字,而跟他們不同的是,他是個現代人!
卡爾曼全名rudolf emil kalman,匈牙利數學家,1930年出生于匈牙利首都布達佩斯。1953,1954年于麻省理工學院分別獲得電機工程學士及碩士學位。1957年于哥倫比亞大學獲得博士學位。我們現在要學習的卡爾曼濾波器,正是源于他的博士論文和1960年發表的論文《a new approach to linear filtering and prediction problems》(線性濾波與預測問題的新方法)。如果對這編論文有興趣,可以到這里的地址下載: http://www.cs.unc.edu/~welch/media/pdf/kalman1960.pdf。
簡單來說,卡爾曼濾波器是一個“optimal recursive data processing algorithm(最優化自回歸數據處理算法)”。對于解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機器人導航,控制,傳感器數據融合甚至在軍事方面的雷達系統以及導彈追蹤等等。近年來更被應用于計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。
2.卡爾曼濾波器的介紹
(introduction to the kalman filter)
為了可以更加容易的理解卡爾曼濾波器,這里會應用形象的描述方法來講解,而不是像大多數參考書那樣羅列一大堆的數學公式和數學符號。但是,他的5條公式是其核心內容。結合現代的計算機,其實卡爾曼的程序相當的簡單,只要你理解了他的那5條公式。
在介紹他的5條公式之前,先讓我們來根據下面的例子一步一步的探索。
假設我們要研究的對象是一個房間的溫度。根據你的經驗判斷,這個房間的溫度是恒定的,也就是下一分鐘的溫度等于現在這一分鐘的溫度(假設我們用一分鐘來做時間單位)。假設你對你的經驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(white gaussian noise),也就是這些偏差跟前后時間是沒有關系的而且符合高斯分配(gaussian distribution)。另外,我們在房間里放一個溫度計,但是這個溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白噪聲。
好了,現在對于某一分鐘我們有兩個有關于該房間的溫度值:你根據經驗的預測值(系統的預測值)和溫度計的值(測量值)。下面我們要用這兩個值結合他們各自的噪聲來估算出房間的實際溫度值。
假如我們要估算k時刻的是實際溫度值。首先你要根據k-1時刻的溫度值,來預測k時刻的溫度。因為你相信溫度是恒定的,所以你會得到k時刻的溫度預測值是跟k-1時刻一樣的,假設是23度,同時該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優溫度值的偏差是3,你對自己預測的不確定度是4度,他們平方相加再開方,就是5)。然后,你從溫度計那里得到了k時刻的溫度值,假設是25度,同時該值的偏差是4度。
由于我們用于估算k時刻的實際溫度有兩個溫度值,分別是23度和25度。究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的covariance來判斷。因為kg^2=5^2/(5^2+4^2),所以kg=0.78,我們可以估算出k時刻的實際溫度值是:23+0.78*(25-23)=24.56度。可以看出,因為溫度計的covariance比較小(比較相信溫度計),所以估算出的最優溫度值偏向溫度計的值。
現在我們已經得到k時刻的最優溫度值了,下一步就是要進入k+1時刻,進行新的最優估算。到現在為止,好像還沒看到什么自回歸的東西出現。對了,在進入k+1時刻之前,我們還要算出k時刻那個最優值(24.56度)的偏差。算法如下:((1-kg)*5^2)^0.5=2.35。這里的5就是上面的k時刻你預測的那個23度溫度值的偏差,得出的2.35就是進入k+1時刻以后k時刻估算出的最優溫度值的偏差(對應于上面的3)。
就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優的溫度值。他運行的很快,而且它只保留了上一時刻的covariance。上面的kg,就是卡爾曼增益(kalman gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!
下面就要言歸正傳,討論真正工程系統上的卡爾曼。
3.卡爾曼濾波器算法
(the kalman filter algorithm)
在這一部分,我們就來描述源于dr kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(probability),隨即變量(random variable),高斯或正態分配(gaussian distribution)還有state-space model等等。但對于卡爾曼濾波器的詳細證明,這里不能一一描述。
首先,我們先要引入一個離散控制過程的系統。該系統可用一個線性隨機微分方程(linear stochastic difference e
(what is the kalman filter?)
在學習卡爾曼濾波器之前,首先看看為什么叫“卡爾曼”。跟其他著名的理論(例如傅立葉變換,泰勒級數等等)一樣,卡爾曼也是一個人的名字,而跟他們不同的是,他是個現代人!
卡爾曼全名rudolf emil kalman,匈牙利數學家,1930年出生于匈牙利首都布達佩斯。1953,1954年于麻省理工學院分別獲得電機工程學士及碩士學位。1957年于哥倫比亞大學獲得博士學位。我們現在要學習的卡爾曼濾波器,正是源于他的博士論文和1960年發表的論文《a new approach to linear filtering and prediction problems》(線性濾波與預測問題的新方法)。如果對這編論文有興趣,可以到這里的地址下載: http://www.cs.unc.edu/~welch/media/pdf/kalman1960.pdf。
簡單來說,卡爾曼濾波器是一個“optimal recursive data processing algorithm(最優化自回歸數據處理算法)”。對于解決很大部分的問題,他是最優,效率最高甚至是最有用的。他的廣泛應用已經超過30年,包括機器人導航,控制,傳感器數據融合甚至在軍事方面的雷達系統以及導彈追蹤等等。近年來更被應用于計算機圖像處理,例如頭臉識別,圖像分割,圖像邊緣檢測等等。
2.卡爾曼濾波器的介紹
(introduction to the kalman filter)
為了可以更加容易的理解卡爾曼濾波器,這里會應用形象的描述方法來講解,而不是像大多數參考書那樣羅列一大堆的數學公式和數學符號。但是,他的5條公式是其核心內容。結合現代的計算機,其實卡爾曼的程序相當的簡單,只要你理解了他的那5條公式。
在介紹他的5條公式之前,先讓我們來根據下面的例子一步一步的探索。
假設我們要研究的對象是一個房間的溫度。根據你的經驗判斷,這個房間的溫度是恒定的,也就是下一分鐘的溫度等于現在這一分鐘的溫度(假設我們用一分鐘來做時間單位)。假設你對你的經驗不是100%的相信,可能會有上下偏差幾度。我們把這些偏差看成是高斯白噪聲(white gaussian noise),也就是這些偏差跟前后時間是沒有關系的而且符合高斯分配(gaussian distribution)。另外,我們在房間里放一個溫度計,但是這個溫度計也不準確的,測量值會比實際值偏差。我們也把這些偏差看成是高斯白噪聲。
好了,現在對于某一分鐘我們有兩個有關于該房間的溫度值:你根據經驗的預測值(系統的預測值)和溫度計的值(測量值)。下面我們要用這兩個值結合他們各自的噪聲來估算出房間的實際溫度值。
假如我們要估算k時刻的是實際溫度值。首先你要根據k-1時刻的溫度值,來預測k時刻的溫度。因為你相信溫度是恒定的,所以你會得到k時刻的溫度預測值是跟k-1時刻一樣的,假設是23度,同時該值的高斯噪聲的偏差是5度(5是這樣得到的:如果k-1時刻估算出的最優溫度值的偏差是3,你對自己預測的不確定度是4度,他們平方相加再開方,就是5)。然后,你從溫度計那里得到了k時刻的溫度值,假設是25度,同時該值的偏差是4度。
由于我們用于估算k時刻的實際溫度有兩個溫度值,分別是23度和25度。究竟實際溫度是多少呢?相信自己還是相信溫度計呢?究竟相信誰多一點,我們可以用他們的covariance來判斷。因為kg^2=5^2/(5^2+4^2),所以kg=0.78,我們可以估算出k時刻的實際溫度值是:23+0.78*(25-23)=24.56度。可以看出,因為溫度計的covariance比較小(比較相信溫度計),所以估算出的最優溫度值偏向溫度計的值。
現在我們已經得到k時刻的最優溫度值了,下一步就是要進入k+1時刻,進行新的最優估算。到現在為止,好像還沒看到什么自回歸的東西出現。對了,在進入k+1時刻之前,我們還要算出k時刻那個最優值(24.56度)的偏差。算法如下:((1-kg)*5^2)^0.5=2.35。這里的5就是上面的k時刻你預測的那個23度溫度值的偏差,得出的2.35就是進入k+1時刻以后k時刻估算出的最優溫度值的偏差(對應于上面的3)。
就是這樣,卡爾曼濾波器就不斷的把covariance遞歸,從而估算出最優的溫度值。他運行的很快,而且它只保留了上一時刻的covariance。上面的kg,就是卡爾曼增益(kalman gain)。他可以隨不同的時刻而改變他自己的值,是不是很神奇!
下面就要言歸正傳,討論真正工程系統上的卡爾曼。
3.卡爾曼濾波器算法
(the kalman filter algorithm)
在這一部分,我們就來描述源于dr kalman 的卡爾曼濾波器。下面的描述,會涉及一些基本的概念知識,包括概率(probability),隨即變量(random variable),高斯或正態分配(gaussian distribution)還有state-space model等等。但對于卡爾曼濾波器的詳細證明,這里不能一一描述。
首先,我們先要引入一個離散控制過程的系統。該系統可用一個線性隨機微分方程(linear stochastic difference e
上一篇:開關電源產品干擾源分布和解決方案
上一篇:一種新型低頻濾波器