RAID技術主要包含RAID 0~RAID 7等數個規范
發布時間:2016/12/6 15:52:57 訪問次數:9877
ide-raid芯片簡介
- 51電子網公益庫存:
- 74FCT374CTQG8
- 74FCT374CTSOG
- 74FCT374CTSOG8
- 74AHC574D112
- 78M05/06/08/09/12
- 78M05
- 78L08
- 74LVC823ABQ118
- 74LVC823AD112
- 74LVC823AD118
- 74LVC823ADB112
- 74LS06
raid技術主要包含raid 0~raid 7等數個規范,它們的側重點各不相同,常見的規范有如下幾種:
raid 0:raid 0連續以位或字節為單位分割數據,并行讀/寫于多個磁盤上,因此具有很高的數據傳輸率,但它沒有數據冗余,因此并不能算是真正的raid結構。raid 0只是單純地提高性能,并沒有為數據的可靠性提供保證,而且其中的一個磁盤失效將影響到所有數據。因此,raid 0不能應用于數據安全性要求高的場合。
raid 1:它是通過磁盤數據鏡像實現數據冗余,在成對的獨立磁盤上產生互為備份的數據。當原始數據繁忙時,可直接從鏡像拷貝中讀取數據,因此raid 1可以提高讀取性能。raid 1是磁盤陣列中單位成本最高的,但提供了很高的數據安全性和可用性。當一個磁盤失效時,系統可以自動切換到鏡像磁盤上讀寫,而不需要重組失效的數據。
raid 0+1: 也被稱為raid 10標準,實際是將raid 0和raid 1標準結合的產物,在連續地以位或字節為單位分割數據并且并行讀/寫多個磁盤的同時,為每一塊磁盤作磁盤鏡像進行冗余。它的優點是同時擁有raid 0的超凡速度和raid 1的數據高可靠性,但是cpu占用率同樣也更高,而且磁盤的利用率比較低。
raid 2:將數據條塊化地分布于不同的硬盤上,條塊單位為位或字節,并使用稱為“加重平均糾錯碼(海明碼)”的編碼技術來提供錯誤檢查及恢復。這種編碼技術需要多個磁盤存放檢查及恢復信息,使得raid 2技術實施更復雜,因此在商業環境中很少使用。
raid 3:它同raid 2非常類似,都是將數據條塊化分布于不同的硬盤上,區別在于raid 3使用簡單的奇偶校驗,并用單塊磁盤存放奇偶校驗信息。如果一塊磁盤失效,奇偶盤及其他數據盤可以重新產生數據;如果奇偶盤失效則不影響數據使用。 raid 3對于大量的連續數據可提供很好的傳輸率,但對于隨機數據來說,奇偶盤會成為寫操作的瓶頸。
raid 4:raid 4同樣也將數據條塊化并分布于不同的磁盤上,但條塊單位為塊或記錄。raid 4使用一塊磁盤作為奇偶校驗盤,每次寫操作都需要訪問奇偶盤,這時奇偶校驗盤會成為寫操作的瓶頸,因此raid 4在商業環境中也很少使用。
raid 5:raid 5不單獨指定的奇偶盤,而是在所有磁盤上交叉地存取數據及奇偶校驗信息。在raid 5上,讀/寫指針可同時對陣列設備進行操作,提供了更高的數據流量。raid 5更適合于小數據塊和隨機讀寫的數據。
raid 3與raid 5相比,最主要的區別在于raid 3每進行一次數據傳輸就需涉及到所有的陣列盤;而對于raid 5來說,大部分數據傳輸只對一塊磁盤操作,并可進行并行操作。在raid 5中有“寫損失”,即每一次寫操作將產生四個實際的讀/寫操作,其中兩次讀舊的數據及奇偶信息,兩次寫新的數據及奇偶信息。
raid 6:與raid 5相比,raid 6增加了第二個獨立的奇偶校驗信息塊。兩個獨立的奇偶系統使用不同的算法,數據的可靠性非常高,即使兩塊磁盤同時失效也不會影響數據的使用。但raid 6需要分配給奇偶校驗信息更大的磁盤空間,相對于raid 5有更大的“寫損失”,因此“寫性能”非常差。較差的性能和復雜的實施方式使得raid 6很少得到實際應用。
raid 7:這是一種新的raid標準,其自身帶有智能化實時操作系統和用于存儲管理的軟件工具,可完全獨立于主機運行,不占用主機cpu資源。raid 7可以看作是一種存儲計算機(storage computer),它與其他raid標準有明顯區別。除了以上的各種標準,我們可以如raid 0+1那樣結合多種raid規范來構筑所需的raid陣列,例如raid 5+3(raid 53)就是一種應用較為廣泛的陣列形式。用戶一般可以通過靈活配置磁盤陣列來獲得更加符合其要求的磁盤存儲系統。
開始時raid方案主要針對scsi硬盤系統,系統成本比較昂貴。1993年,highpoint公司推出了第一款ide-raid芯片,能夠利用相對廉價的ide硬盤來組建raid系統,從而大大降低了raid的“門檻”。
面向個人用戶的ide-raid芯片一般只提供了raid 0、raid 1和raid 0+1(raid 10)等raid規范的支持,雖然它們在技術上無法與商用系統相提并論,但是對普通用戶來說其提供的速度提升和安全保證已經足夠了。
隨著硬盤接口傳輸率的不斷提高,ide-raid芯片也不斷地更新換代,芯片市場上的主流芯片已經全部支持ata 100標準,而highpoint公司新推出的hpt 372芯片和promise最新的pdc20276芯片,甚至已經可以支持ata 133標準的ide硬盤。在主板廠商競爭加劇、個人電腦用戶要求逐漸提高的今天,在主板上板載raid芯片的廠商已經不在少數,用戶完全可以不用購置 raid卡,直接組建自己的磁盤陣列,感受磁盤狂飆的速度。
磁盤陣列對于個人電腦用戶,還是比較陌生和神秘的。印象中的磁盤陣列似乎還停留在這樣的場景中:在寬闊的大廳里,林立的磁盤柜,數名表情陰郁、早早謝頂的工程師徘徊在其中,不斷從中抽出一塊塊沉重的硬盤,再插入一塊塊似乎更加沉重的硬盤……終于,隨著大容量硬盤的價格不斷降低,個人電腦的性能不斷提升,ide- raid作為磁盤性能改善的最廉價解決方案,開始走入一般用戶的計算機系統。
ide-raid芯片簡介
- 51電子網公益庫存:
- 74FCT374CTQG8
- 74FCT374CTSOG
- 74FCT374CTSOG8
- 74AHC574D112
- 78M05/06/08/09/12
- 78M05
- 78L08
- 74LVC823ABQ118
- 74LVC823AD112
- 74LVC823AD118
- 74LVC823ADB112
- 74LS06
raid技術主要包含raid 0~raid 7等數個規范,它們的側重點各不相同,常見的規范有如下幾種:
raid 0:raid 0連續以位或字節為單位分割數據,并行讀/寫于多個磁盤上,因此具有很高的數據傳輸率,但它沒有數據冗余,因此并不能算是真正的raid結構。raid 0只是單純地提高性能,并沒有為數據的可靠性提供保證,而且其中的一個磁盤失效將影響到所有數據。因此,raid 0不能應用于數據安全性要求高的場合。
raid 1:它是通過磁盤數據鏡像實現數據冗余,在成對的獨立磁盤上產生互為備份的數據。當原始數據繁忙時,可直接從鏡像拷貝中讀取數據,因此raid 1可以提高讀取性能。raid 1是磁盤陣列中單位成本最高的,但提供了很高的數據安全性和可用性。當一個磁盤失效時,系統可以自動切換到鏡像磁盤上讀寫,而不需要重組失效的數據。
raid 0+1: 也被稱為raid 10標準,實際是將raid 0和raid 1標準結合的產物,在連續地以位或字節為單位分割數據并且并行讀/寫多個磁盤的同時,為每一塊磁盤作磁盤鏡像進行冗余。它的優點是同時擁有raid 0的超凡速度和raid 1的數據高可靠性,但是cpu占用率同樣也更高,而且磁盤的利用率比較低。
raid 2:將數據條塊化地分布于不同的硬盤上,條塊單位為位或字節,并使用稱為“加重平均糾錯碼(海明碼)”的編碼技術來提供錯誤檢查及恢復。這種編碼技術需要多個磁盤存放檢查及恢復信息,使得raid 2技術實施更復雜,因此在商業環境中很少使用。
raid 3:它同raid 2非常類似,都是將數據條塊化分布于不同的硬盤上,區別在于raid 3使用簡單的奇偶校驗,并用單塊磁盤存放奇偶校驗信息。如果一塊磁盤失效,奇偶盤及其他數據盤可以重新產生數據;如果奇偶盤失效則不影響數據使用。 raid 3對于大量的連續數據可提供很好的傳輸率,但對于隨機數據來說,奇偶盤會成為寫操作的瓶頸。
raid 4:raid 4同樣也將數據條塊化并分布于不同的磁盤上,但條塊單位為塊或記錄。raid 4使用一塊磁盤作為奇偶校驗盤,每次寫操作都需要訪問奇偶盤,這時奇偶校驗盤會成為寫操作的瓶頸,因此raid 4在商業環境中也很少使用。
raid 5:raid 5不單獨指定的奇偶盤,而是在所有磁盤上交叉地存取數據及奇偶校驗信息。在raid 5上,讀/寫指針可同時對陣列設備進行操作,提供了更高的數據流量。raid 5更適合于小數據塊和隨機讀寫的數據。
raid 3與raid 5相比,最主要的區別在于raid 3每進行一次數據傳輸就需涉及到所有的陣列盤;而對于raid 5來說,大部分數據傳輸只對一塊磁盤操作,并可進行并行操作。在raid 5中有“寫損失”,即每一次寫操作將產生四個實際的讀/寫操作,其中兩次讀舊的數據及奇偶信息,兩次寫新的數據及奇偶信息。
raid 6:與raid 5相比,raid 6增加了第二個獨立的奇偶校驗信息塊。兩個獨立的奇偶系統使用不同的算法,數據的可靠性非常高,即使兩塊磁盤同時失效也不會影響數據的使用。但raid 6需要分配給奇偶校驗信息更大的磁盤空間,相對于raid 5有更大的“寫損失”,因此“寫性能”非常差。較差的性能和復雜的實施方式使得raid 6很少得到實際應用。
raid 7:這是一種新的raid標準,其自身帶有智能化實時操作系統和用于存儲管理的軟件工具,可完全獨立于主機運行,不占用主機cpu資源。raid 7可以看作是一種存儲計算機(storage computer),它與其他raid標準有明顯區別。除了以上的各種標準,我們可以如raid 0+1那樣結合多種raid規范來構筑所需的raid陣列,例如raid 5+3(raid 53)就是一種應用較為廣泛的陣列形式。用戶一般可以通過靈活配置磁盤陣列來獲得更加符合其要求的磁盤存儲系統。
開始時raid方案主要針對scsi硬盤系統,系統成本比較昂貴。1993年,highpoint公司推出了第一款ide-raid芯片,能夠利用相對廉價的ide硬盤來組建raid系統,從而大大降低了raid的“門檻”。
面向個人用戶的ide-raid芯片一般只提供了raid 0、raid 1和raid 0+1(raid 10)等raid規范的支持,雖然它們在技術上無法與商用系統相提并論,但是對普通用戶來說其提供的速度提升和安全保證已經足夠了。
隨著硬盤接口傳輸率的不斷提高,ide-raid芯片也不斷地更新換代,芯片市場上的主流芯片已經全部支持ata 100標準,而highpoint公司新推出的hpt 372芯片和promise最新的pdc20276芯片,甚至已經可以支持ata 133標準的ide硬盤。在主板廠商競爭加劇、個人電腦用戶要求逐漸提高的今天,在主板上板載raid芯片的廠商已經不在少數,用戶完全可以不用購置 raid卡,直接組建自己的磁盤陣列,感受磁盤狂飆的速度。
磁盤陣列對于個人電腦用戶,還是比較陌生和神秘的。印象中的磁盤陣列似乎還停留在這樣的場景中:在寬闊的大廳里,林立的磁盤柜,數名表情陰郁、早早謝頂的工程師徘徊在其中,不斷從中抽出一塊塊沉重的硬盤,再插入一塊塊似乎更加沉重的硬盤……終于,隨著大容量硬盤的價格不斷降低,個人電腦的性能不斷提升,ide- raid作為磁盤性能改善的最廉價解決方案,開始走入一般用戶的計算機系統。
上一篇:aundroid機器人能夠識別