低壓CMOS滿幅度恒定增益運算放大器設計
發布時間:2007/4/12 0:00:00 訪問次數:421
1引言
隨著便攜式消費電子需求的日益增長,低壓、低功耗設計已經成為集成電路設計的研究熱點之一。趨勢表明[1],電壓的降低給模擬電路設計帶來很大挑戰。就低壓運放設計而言,一般傳統采用互補差分對輸入級以實現滿幅度輸入范圍,然而,當電源電壓低于Vt.NMOS+|Vt.PMOS|+VDS,PMOS-|VDS,PMOS|時,差分對會出現截止區,導致最小電源電壓要高于2個閾值電壓與2個過飽和電壓之和。0.35μm工藝下Vt,NMOS的典型值為0.52V,Vt,PMOS的典型值為-0.75V,則傳統結構的最小工作電壓只能在1.4V左右。為了避免采用復雜工藝實現電源電壓低于1V的運算放大器而增加產品成本。見文獻[2-4]的電路結構采用共模電平偏移的電路結構,箝位共模電平,在標準CMOS工藝下簡單地實現了低電壓運算放大器。
已有文獻[2]采用PMOS差分對來實現電源電壓為1V的運算放大器,但由于Vt,PMOS的典型值為-0.75V,使得前置反饋電路的工作電平范圍為1-0.15V,幾乎涵蓋整個共模電平范圍,運算放大器的穩定性降低,另外,該結構下的折疊式共源共柵結構也會受體效應的影響,影響增益的恒定性。本文采用NMOS差分對結構,還對前置反饋電平偏移電路進行相應的改進,使電源電壓降為0.9V的同時,提高了增益的恒定性。
2 設計的基本思路
基于前置反饋的電平偏移電路的設計如圖1,Vi+,Vi-的共模電平Vi,cm低于Vref時,通過反饋電路控制電流源獲得適當的電流I,Vin+,Vin-的共模電平Vin,cm提升到Vref,同時電阻傳遞完整的差模信號,再由Vin+,Vin-連接NMOS差分對來實現整體電路,如圖1所示。
3 運算放大器的具體實現
反饋電路的實現如圖2所示,其反饋過程如下:Vi+,Vi-的共模電平Vi,cm降低時,Vin+,Vin-的共模電Vin,cm降低,此時IDM1減小,IDM11增大,Vx點的電位升高,IDM8增大,電阻的端電壓增大,Vin,cm升高。若Vref過高,由于Ib的大小和電流鏡工作電壓的限制,Vin,cm不會上升到Vtel的電平。為了M5與M6,M7的漏源電壓近似相等,引入M12增強電流鏡的匹配。
下面對反饋環路的穩定性進行分析,運放A的開環增益為:
由式(5)可以看出,電路工作時,需要保持M8漏源電壓較小,則寬長較大,在相同的漏源電流下,Gm8不可能很小。所以在電路設計時,運放A的跨導Gm1應該可能小,補償電容C應該較大,同時在版圖設計中應該注意減小寄生電容Cp,以增強反饋的穩定性。
采用NMOS差分對的低壓運算放大器,結構如圖3所示,其兩級直流增益可以分別為:
Av1=gmt1[rot8//gmt6rot6+1]rot4] (6)
Av2=gmt9(rot9//rot10) (7)
其中,gmt1,gmt6,gmt9分別為MT1,MT6,MT9的跨導,rot4,rot6,rot9,rot10分別為對應mos管的輸出電阻。
4 模擬結果
在0.9V電源電壓下,為使M3,M4工作在放大區,Vret可在0.62-1V之間取任意值,圖4結果顯示,在0-0.9V的共模電平范圍內,當輸入端共模電平Vi,cm<0.62V時,此時反饋電路使得M1,M2工作在放大區,內部共模電平Vin,cm保持0.62V恒定;Vi,cm>0.62V時,Vx電位降低,反饋電路停止工作,Vin,cm隨Vi,cm增大而增大。
在10pF外接負載情況下,交流特性如圖5所示。
1引言 2 設計的基本思路
下面對反饋環路的穩定性進行分析,運放A的開環增益為: 由式(5)可以看出,電路工作時,需要保持M8漏源電壓較小,則寬長較大,在相同的漏源電流下,Gm8不可能很小。所以在電路設計時,運放A的跨導Gm1應該可能小,補償電容C應該較大,同時在版圖設計中應該注意減小寄生電容Cp,以增強反饋的穩定性。 采用NMOS差分對的低壓運算放大器,結構如圖3所示,其兩級直流增益可以分別為: Av1=gmt1[rot8//gmt6rot6+1]rot4] (6) Av2=gmt9(rot9//rot10) (7) 其中,gmt1,gmt6,gmt9分別為MT1,MT6,MT9的跨導,rot4,rot6,rot9,rot10分別為對應mos管的輸出電阻。 4 模擬結果 在0.9V電源電壓下,為使M3,M4工作在放大區,Vret可在0.62-1V之間取任意值,圖4結果顯示,在0-0.9V的共模電平范圍內,當輸入端共模電平Vi,cm<0.62V時,此時反饋電路使得M1,M2工作在放大區,內部共模電平Vin,cm保持0.62V恒定;Vi,cm>0.62V時,Vx電位降低,反饋電路停止工作,Vin,cm隨Vi,cm增大而增大。 在10pF外接負載情況下,交流特性如圖5所示。
|